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Abstract

A numerical analysis is performed for the electroosmotic flow of two miscible electrolyte streams in a T-shaped microchannel. Rich
dynamic features are revealed concerning the onset and growth of the electrohydrodynamic instability. It is shown the molecular diffu-
sion has dual role in the onset and development of instability, and the system is unstable to high electric fields even without any external
disturbances. The molecular diffusion process is shown to play a key role in making the wave pattern looks regular and deterministic.
Detailed mechanisms in the latter stage of instability growth and formation of spike-like wave patterns are also explained.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In a microfluidic condition, fluid flow is usually stable
due to the dominant role of viscous damping, and mixing
liquids is actually like trying to stir molasses into honey
[1]. In the respect of such a general nature of micro flows,
flow instability observed in a T-channel by Chen et al. [2]
and Shin et al. [3] may be considered as an interesting
and extraordinary phenomenon. According to their obser-
vations, the two co-flowing layers with different electrolyte
concentrations driven by DC [2] or AC [3] electroosmotic
flow result in fast growth of wavy interfacial patterns as
shown in Fig. 1. This kind of flow instability can be trou-
blesome in proper functioning of some microfluidic devices
requiring stable transport of species, such as in isoelectric
focusing devices (Ref. [4] and references therein). On the
other hand, this instability can be beneficially utilized as
a means to promote mixing in microfluidic systems [5–7]
(see, for more detailed review, Ref. [8]).
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As explained by Lin et al. [8], this kind of instability can
be categorized into a family of electrohydrodynamic insta-
bility. The conductivity or concentration gradient in an
electric field is a source of electrical free charges, on which
the Coulombic force may act to generate electrohydrody-
namic flow. Hoburg and Melcher [9] showed that this type
of polarization leads to unstable motion of two miscible
contacting fluids of different concentrations under a paral-
lel electric field to the interface in an unbounded domain.
Baygent et al. [4] explained the origin of flow generated
in isoelectric focusing devices in the same respect.

Santiago and his co-workers performed linear analysis
and numerical analysis to understand the details of the
instability [8,10–12]. Lin et al. [8] extended the analysis of
Hoburg and Melcher [9] by including the advective effects
due to electroosmotic flow. A linear and a nonlinear
numerical analysis were performed, which exhibits a qual-
itative agreement to their experimental results. Storey et al.
[11] demonstrated via a three-dimensional linear analysis
that the top and bottom walls of a shallow channel stabi-
lized the flow with respect to two-dimensional predictions.
Chen et al. [12] preformed a more rigorous analysis for the
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Fig. 1. Instability of electroosmotically-driven two-layered flow of aque-
ous NaCl solution having different concentrations. (Photo courtesy of
S.M. Shin).

Nomenclature

c molar concentration
D diffusivity of ionic species
d channel width
E electric field
F Faraday constant
i current density
p pressure
Pe Peclet number, ucd/D = ReSc

Sc Schmidt number, m/D
t time
Re Reynolds number, ucd/m
u velocity vector
uc characteristic velocity, uc = efaveE0/(2l)
uHS Helmholtz–Smoluchowski slip velocity
V external voltage
x horizontal coordinate
y vertical coordinate

Greek symbols

e electrical permittivity
/ electrostatic potential
l fluid viscosity
m kinematic viscosity of fluid
q fluid density
qe free charge density
r electrical conductivity
x ionic mobility
f zeta potential
fave average zeta potential, (f(cl) + f(ch))/2

Subscripts

+ cationic species
� anionic species
h higher concentration
l lower concentration
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instability, and compared their prediction on temporal
growth rate, threshold electric field for onset of instability,
and so on, with their experimental results.

In all of those analyses, the temporal stability analysis is
carried out, and any geometrical effects except the channel
width cannot be considered. In addition, a white noise is
‘‘artificially’’ imposed as an initial condition, which eventu-
ally shows a rather chaotic growth of the instability waves.
According to the previous observations for a T-shaped
channel [2,3,12], however, the instability waves shows well
organized features which is quite different from the case of
straight channel considered in Refs. [8,10–12] (see Lin et al.
[8]). For example, the wave pattern observed is very regu-
lar, and the overall structure of the spiky patterns is has
mutually consistent patterns in all the experiments. It sug-
gests that there exists unknown system-born and ‘‘deter-
ministic’’ factors that induce the instability and govern
the evolution of the instability.

In the present work, we specifically consider the instabil-
ity in the T-shaped microchannel which corresponds to the
experimental conditions in Refs. [2,3,12]. The specific
objective is to find out the system-born factors with respect
to a rather practical condition. We performed a numerical
analysis for the two-dimensional unsteady DC electro-
osmotic flow, following the general methodology of Lin
et al. [8]. The numerical analysis reproduces all the features
of the instability waves observed in the experiments quite
satisfactorily.

We found that, in a practical channel, the instability is
initiated due to a diffusion-induced symmetry-breaking
process occurring at the initial contact region of the two
electrolyte streams. Thus, the system is unstable to a high
external electric field even without any external distur-
bances. It is demonstrated that the molecular diffusion
around the junction region of the two streams enhances
the ‘‘spatial’’ development of the instability. In fact, the
molecular diffusion has been known to just suppress
the onset and development of instability by reducing the
electrical body force [8,10–12]. It is also shown that the
molecular diffusion process at the junction region plays a
key role in making the wave pattern looks regular and
deterministic.

2. Formulations

The domain of analysis is depicted in Fig. 2. The vertical
and horizontal branches in the figure are called here the ver-
tical and the horizontal channels respectively. The concen-
trations of the two electrolyte liquids entering the domain
are indicated as ch and cl, in which h and l denote the high
and low concentrations. We consider the case of 1:1 sym-
metric electrolyte. The electrolytes are free from chemical
reaction and their activity coefficient is assumed to be unity.
The dielectric constant of the solution is uniform through-
out the domain. The thickness of the electrical double layer
on walls is assumed to be much thinner than the channel
width. These assumptions are reasonable and consistent
with the previous experimental conditions [2,3].

All the material properties are assumed uniform in
liquid and solid region, respectively. In the quasi-electro-
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Fig. 2. Domain of analysis.
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static limit, the electric field is separable from the magnetic
field, and the Maxwell equations are simplified to [13,14]

r � ðeEÞ ¼ qe ð1Þ
r � E ¼ 0 ð2Þ
oqe

ot
þr � i ¼ 0 ð3Þ

where E = �$/ is the electric field, / the electrostatic
potential, e electrical permittivity, qe the free charge den-
sity, t the time, and i the current density.

For an electrolyte, the current is due to the motion of
ionic species. The current density can be expressed as [15]

i ¼ �rr/� F ðDþrc� � Dþrc�Þ þ F uðcþ � c�Þ ð4Þ
where r = F2(x+ + x�)c is the conductivity, x the mobility
of the ionic species, F the Faraday constant, and c the
molar concentration of electrolyte. In the above equation,
the first, second, and third terms are the conduction, diffu-
sion, and electromigration terms, respectively.

In an electrolytic system, the diffusional and convec-
tional currents are in general negligible compared to the
conductional current [14,16]. Then, the current density
can be expressed by the Ohm’s law of i = rE. If there is
no chemical reaction and no generation of ionic species,
the conservation of species at a point requires

oc
ot
þ u � rc ¼ Dr2c ð5Þ

where D = 2D+D�/(D+ + D�) is the equivalent diffusivity.
In Eq. (3), under a DC electric field, the displacement

current, oqe/ot, can be neglected for a microscale scale sys-
tem [13,14,16]. Then, the electrostatic potential satisfies

r � ðrr/Þ ¼ 0 ð6Þ
Due to the quasi-electroneutrality assumption [14–16],

we use the preceding equations rather than the Poisson
equation, Eq. (1), to analyze the electric field. The Poisson
equation is used for ‘‘after-the-fact’’ evaluation of the free
charge density as follows:

qe ¼ �
erc � E

c
ð7Þ
For an unsteady incompressible flow, the continuity and
the momentum equation are written as

r � u ¼ 0 ð8Þ

q
Du

Dt
¼ �rp þ lr2uþ qeE ð9Þ

Here, D/Dt = o/ot + u Æ $, p the pressure, q the mass den-
sity, and l the viscosity of fluid.

Under the thin electrical double layer assumption, we
take the Helmholtz–Smoluchowski slip velocity, uHS, as
the slip velocity on the wall, ut [15], i.e.,

ut ¼ uHS ¼ �
efE � t

l
on Sw ð10Þ

in which t is the unit tangential vector on the wall and f is
the zeta potential of the wall. According to the experimen-
tal result of Shin et al. [3], the zeta potential is well approx-
imated for NaCl solution in the range of 0.1 mM to
10 mM, by the following formula

fðcÞ ¼ 7:8� 10�3 þ 2:1� 10�2 log c ð11Þ

The initial conditions for concentration and momentum
equations are given as follows:

At t ¼ 0 : c ¼ cl if y > 0; and c ¼ ch if y < 0;

u ¼ 0; throughout the domain ð12Þ

The boundary conditions for concentration, electric
potential, and momentum equations are summarized as
follows:

On Sl : c¼ cl; r/ � n¼ E0; u¼ 0; v¼ vl ð13aÞ

On Sh : c¼ ch; r/ � n¼ E0; u¼ 0; v¼ vh ð13bÞ

On Sw : rc � n¼ 0; r/ � n¼ 0; u � n¼ 0; u � t¼ uHS ð13cÞ

On Sout : rc � n¼ 0; /¼ 0; u � n¼ 0 ð13dÞ

Here, n is the outward unit normal at the boundary sur-
face. Note that the constant flux condition of $/ Æ n = E0

is applied on Sl and Sh.
We non-dimensionalize the equations by introducing the

following non-dimensional variables:

�t ¼ t
tc

; �x ¼ x
d
; �y ¼ y

d
; �E ¼ E

E0

; �/ ¼ /
E0d

;

�u ¼ u

uc

; �c ¼ c
ch � cl

; �qe ¼
qe

eðE0=dÞ :

We take the average inlet velocity at Sl and Sh as the
characteristic velocity of uc = efaveE0/(2l), where fave =
[f(cl) + f(ch)]/2. The characteristic time is chosen as
tc = d/uc. By substituting the dimensionless variables into
Eqs. (5), (6), and (9), we obtain the following non-dimen-
sional equations, in which the overbar is dropped for
brevity:
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Du

Dt
¼ �rp þ 1

Re
r2uþ kðr2/Þr/ ð14Þ

r � ðcr/Þ ¼ 0 ð15Þ
Dc
Dt
¼ 1

Pe
r2c ð16Þ

Here, Re = ucd/m, Sc = m/D and Pe = ucd/D = ReSc, are
the Reynolds number, Schmidt number, and Peclet num-
ber. The parameter, k ¼ eE2

0= qu2
c

� �
¼ l2= qef2

ave

� �
, repre-

sents the relative magnitude of the Coulombic force with
respect to the inertia force.

Let us consider the case of aqueous NaCl solution in a
microchannel in which d = 150 lm, cl = 1 mM, ch =
10 mM, e = 6.9 · 10�10 C2/(Jm), and D = 1.5 · 10�9 m2/s.
Then, it becomes fl = �55.2 mV, fh = �34.2 mV, fave =
44.7 mV and uc = 0.93 mm/s. In Fig. 1, the potential differ-
ence between the inlet and outlet is 700 V and the total
length of the channel is about 1.7 cm. The electric field at
Sl and Sh is estimated as E0 = 32 kV/m. Then, the dimen-
sionless parameters become Re = 0.14, Pe = 87, Sc = 622,
and k = 819.
Fig. 3. Numerical results at an instant for k = 130. (a) Concentration, (b) electr
density with concentration (solid line), (d) Coulombic force vector (qeE, arrow)
magnitude) and iso-concentration line (line).
3. Results and discussion

3.1. Numerical results and the mechanism of free charge

generation

A numerical analysis is performed, on the basis of the
finite volume method, for the fully coupled set of nonlinear
equations of Eqs. (14)–(16), under the given initial and
boundary conditions of Eqs. (12) and (13). The governing
equations are discretized under the second-order upwind
scheme. The SIMPLE method is used for pressure correc-
tion. A uniform rectangular mesh is used, in which
Dx = Dy = 0.04. The time-step size is fixed at t = 0.01 for
the unsteady simulation.

Fig. 3a shows the concentration distribution obtained
numerically for Re = 0.14, Pe = 87, and k = 130 in which
four hump-shaped pattern (what we call hump) are clearly
shown. Note that the concentration is inversely propor-
tional to darkness level, and therefore, the concentration
is higher at brighter region (lower part in Fig. 3a). Eight
marker points (P1–P8) are placed for easier understanding
ic field line (thick line) and iso-concentration line (thin line), (c) free charge
, (e) magnitude of velocity vector (darkness level is proportional to velocity



Fig. 4. Mechanisms of free charge generation. (a) diffusion, (b) interface
deformation. ‘‘+’’ and ‘‘�’’ signs indicate the positive and negative
charges.

Fig. 5. Enlarged plot of Coulombic force vectors and magnitude of
velocity vector shown in Fig. 3.

Fig. 6. Effect of diffusivity on free charge generation for k = 130 and
Pe = 87. (a) Concentration (thin black line) with electric field line (thick
gray line). (b) Free charge density (contour) and Coulombic force (qeE,
arrow). A reference vector is shown at the bottom of (b).
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in the figures. The amplitude of the humps grows as they
are convected downstream. The overall interface patterns
look similar to those from experimental results. Fig. 3b
shows the electric field line, which becomes nearly straight
just after the juncture region. Thus, the electric field is
almost parallel to the horizontal axis in 1.5 < x < 5.
Fig. 3c shows the distribution of free charge density. The
darkness level indicates the magnitude of positive charges,
while the brightness is proportional to the magnitude of
negative charges.

First, the free charge can be generated by the transverse
diffusion of species (see Fig. 4a). It is supposed in Fig. 4a
that the electric field is parallel to x-direction. The thick-
ness of the mixing layer increases in the downstream direc-
tion due to convection and transverse diffusion. This results
in a non-vanishing value of $c Æ E. At the upper part of the
mixing layer oc/ox > 0, while at the lower part oc/ox < 0.
Accordingly, qe = �e$c Æ E/c < 0 above the center region,
and qe > 0 below the center region. It will be discussed in
the next section that this mechanism plays a crucial role
in the onset and initial growth of instability.

On the other hand, the mechanism depicted in Fig. 4a is
not the only way to generate the free charge by transverse
diffusion. The tranverse diffusion for instance may influ-
ence the electric field by way of changing the conductivity
distribution. (In the following section, we will show in Figs.
6 and 7 that the transverse diffusion affects the electric field
distribution significantly). Hence, even when oc/ox = 0,
free charge can be generated only if oc/oy · Ey 5 0, where
Ey represents the vertical component of E. The mechanism
in Fig. 4a should be understood as a representative means
to generate free charge by tranverse diffusion.

Second, the free charge is induced by interface deforma-
tion (see Fig. 4b). It is supposed also in Fig. 4b that the
electric field is parallel to x-direction. If the interface is
deformed due to some reason, which we will discuss later
in this paper, $c Æ E becomes non-zero. The lower stream
has a high concentration. As showin in Fig. 4b, therefore,
$c Æ E > 0 at the fore of a hump and $c Æ E < 0 at the back
of a hump. As a result, Fig. 3c shows qe < 0 at the fore of
each hump (close to P1–P4), while qe > 0 and at the back of
the hump (near P5–P8).

Fig. 3d shows the Coulombic force vectors. Fig. 3e
shows the magnitude of velocity vector (contour). In
Fig. 3e, the darkness level is proportional to the magnitude
of the velocity vectors. High velocity regions are formed at
the back of each hump (P5–P8), while low velocity regions
are formed at the front part. Fig. 5 shows the Coulombic
force vectors and magnitude of velocity vector which are
shown in Fig. 3d and Fig. 3e, respectively. We can find
from Fig. 5 that the Coulombic force is directed to the posi-
tive (negative) x-direction at the high (low) velocity region.
It is because the Coulombic force exerts force on fluid ele-
ment. Accordingly, flow velocity would be increased
around the region where the Coulombic force is directed
to positive x-direction, and vice versa. Although not shown
here, we verified that the fluctuation velocity vector (veloc-
ity vectors obtained by subtracting the x-directional mean
velocity from the total velocity) quite resembles the Cou-
lombic force vector.

3.2. Initial growth of the instability driven by transverse

molecular diffusion

To demonstrate the effect of molecular diffusion, the free
charge density and Coulombic force around the juncture
region are compared for the two Peclet numbers of
Pe = 87 and Pe = 870 in Figs. 6 and 7. In Figs. 6b and



Fig. 7. k = 130 and Pe = 870. (see Fig. 6 for figure caption).
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7b, the darkness level indicates the magnitude of positive
charges, while the brightness is proportional to the magni-
tude of negative charges. Note that the case of Pe = 87 cor-
responds to the previous case of Fig. 3. When diffusion rate
is lower (Pe = 870), the fluid interface remains almost flat
throughout the domain and no sign of instability is
observed.

When Pe = 87, shown in Fig. 6, the electric field is
rather deflected towards the upper wall. Moreover, the
fluid interface near the left wall of the vertical channel is
shifted downward. They are surely originated from the
transversal-diffusion-induced charge depicted in Fig. 4a.
As the molecular diffusion becomes significant, the magni-
tude of induced charge near the juncture region increases.
Consequently, if we compare Figs. 6 and 7, the magnitude
of free charge density and Coulombic force are roughly one
order of magnitude greater for the case of Pe = 87. From
this result, we can infer that as the diffusivity of the ions
gets smaller, the amount of free charge would be reduced
and onset of instability would be delayed.

For the two cases in common, a decelerating (accelerat-
ing) force acts on the upper (lower) part from the centerline
in which qe < 0 (qe > 0). Thus, the fluid experiences a sort
of counter-clockwise angular momentum near the juncture
region. This angular momentum would deform the fluids
interface. When Pe = 870, this momentum is not strong
enough to cause the observable deformation of interface.
When Pe = 87, however, the deceleration at the upper part
and acceleration at the lower part eventually shift the inter-
face to the downward direction due to the mass conserva-
tion. We checked that the shift becomes significant in
proportion to the applied field strength, which is consistent
to the experimental results of Shin et al. [3].
As shown, the effect of diffusion is so dramatic on the
onset of instability. It is also interesting that the molecular
diffusion plays a dual role in the generation of instability. If
the molecular diffusion is sufficiently high, $c will be
reduced at the downstream part, which reduces the growth
rate of instability.

3.3. Later stage of growth driven by interface deformation

Fig. 3b shows the electric field lines and the concentra-
tion contours together. At the region around 1 < x < 6,
the electric field line and the concentration contour are
quite parallel. This implies that $c and E may be orthogo-
nal to each other, and $c Æ E may have a rather small value
in this region. On the other hand, at the region of x > 6, the
concentration contours are significantly deflected due to
interface deformation, while the electric field lines still
keeps quite straight forms compared to the concentration
contour. It is evident that $c Æ E may have a large value
in the region of x > 6. Accordingly, the magnitude of the
induced charge will be proportional to the degree of inter-
face deformation.

On the other hand, the Coulombic force either deceler-
ates or accelerates fluid locally depending on the sign of
charges. As shown in Figs. 3c and 4b, the negative and posi-
tive charges are induced periodically at the left-hand side
and right-hand side of each hump. Therefore, flow velocity
is decreased at the back of hump (P1–P4) and is increased at
the fore (P5–P8) as shown in Fig. 3e. Accordingly, the inter-
face will be further deformed by the action of Coulombic
force on the free charge generated by interface deformation.

In summary, the interface deformation causes and
enhances the generation of free charge while the existence
of free charge may in turn causes interface deformation.
Therefore, the free charge density and interface deforma-
tion has some feedback relationship. This relation eventu-
ally generates the spike-like interface patterns shown in
Fig. 1. Note that the electrically-generated angular momen-
tum is always in counter-clockwise direction for the pres-
ent configuration. Consequently, the direction of spike is
always backward which is consistent to previous experi-
mental results.

Although it is not shown here, we performed numerical
analyses by changing k for the conditions of Re = 0.14 and
Pe = 87. The instability started to grow within the domain
of interest between k = 100 and 110. In the experiment of
Fig. 1, however, the instability was observed (within the
domain of interest) at about k = 424. The numerical anal-
ysis, therefore, under-predicts the threshold condition for
electric-field strength by about half. It is fairly satisfactory
considering that the fluid flow, electric field, and diffusion
in the experiment have the three-dimensional characters.

4. Conclusions

The simulation reproduces important features of the
interface patterns observed in experiments. This reconfirms
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clearly that this electrohydrodynamic instability originates
from polarization induced by a conductivity gradient in
two mixing electrolyte layers. Initial disturbance is pro-
duced automatically by the molecular diffusion of species
across the interface. Thus, the system is always unstable
to the high external electric field even without external dis-
turbances. It is demonstrated that the molecular diffusion
around the junction region of the two streams enhances
the spatial development of the instability. In turn, the
occurrence of instability is delayed substantially in domain
of interests when the molecular diffusion is very slow. It is
also shown that the molecular diffusion process at the junc-
tion region plays a key role in making the wave pattern
looks regular and deterministic. The initial perturbation
formed in the vicinity of the T-junction grows explosively
at the downstream part assisted by the deformation-
induced polarization.
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